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Fermilab Test Beam Facility 
•  a 
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Primary beam
   Protons: 120 GeV
Secondary beams available at FTBF
   Pion Mode: 8-66 GeV beam
   Low Energy Pion Mode: 1-32 GeV beam
   Muon Mode: Same energy range as above
Tertiary beam @ MCenter
   Tunable: ~200 MeV – 1.5 GeV



FTBF MCenter Tertiary Beam 
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Tertiary beam spectra & composition 

•  Only negative polarity data shown here 
•  Beam composition before any analysis cuts  
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“Low energy tune” “High energy tune” 



LArIAT Experimental Details 
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•  Time Projection Chamber 
•  Repurposed from ArgoNeuT 
•  New wireplanes and cold readout 

electronics (MicroBooNE ASICs) 
•  1 (non-instrumented shield plane: 

225 vertical wires 
•  2 readout planes: 240 wires each, 

±60º, 4mm pitch (for the analysis 
discussed here today) 

•  Drift field ~500 V/cm (nominal) 



Cross section analysis steps 
• Select desired particles using beamline instrumentation 
• Match beamline trajectory with track inside TPC 
• Divide the TPC into many “thin targets” 

•  Each thin target is a binary “experiment”: did the particle interact in 
this thin target – yes or no? What was its energy at this target? 

•  Every TPC track undergoes many experiments (one experiment 
per thin target it travels through).  

• Correct for backgrounds and reconstruction effects/
inefficiencies 
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First, use beamline to select particles of interest 
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pions, muons, and electrons 

LArIAT Run-II
preliminary •  Magnet polarity can be changed to 

select either positive or negative 
particles  

•  Use wire chambers + magnets to 
determine momentum 

•  TOF + magnetic spectrometer enables 
some distinction among particle types 
NB: We cannot distinguish among the light 
particles (pions, muons, electrons) 

Beam Direction	



Beamline Momentum Uncertainty 
•  For the negative pion analysis we currently take 2% as 

the momentum uncertainty, based on studies done by 
MINERvA test beam effort (same beamline) 

• A study using TOF and known particles (kaons & protons) 
gives consistent estimate of momentum uncertainty 
(~2%), but also shows a ~3% shift 

• A TPC-range-based cross check of the beamline 
momentum is in progress 
•  Using stopping particles in TPC, determine momentum based on 

range, extrapolate back to WC4  
•  Compare spectrometer momentum measurement with range-based 

measurement 
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Match beamline track with TPC track 
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Match beamline track with TPC track 
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“Thin-Target” Cross Section 
•  The survival probability of a pion traveling through a thin 

slab of material is given by: 
 
 
 
 
• We can measure directly the interaction probability as the 

ratio of the number of interacting pions to incident pions: 
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“Thin-Target” Cross Section 
•  In the limit of a thin target, the interaction probability can 

be Taylor expanded to solve for the cross section… 
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We can treat TPC wire-to-wire spacing 
as a series of “thin targets” because 
we know the energy of the pion as it is 
incident on each slice. 

P
interaction

= 1� e��⇢dx ' 1� (1� �⇢dx+O(dx2))
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Proof of Principle 
•  Using MC truth-level quantities 

(no reconstruction), divide TPC 
into slices defined by wire pitch 

•  In each slice, measure the 
energy of the particle track and 
check if it interacted 

•  Construct the cross section, 
binned by energy of the particle 
at each slice 

•  The method reproduces the 
Geant4 predicted cross section 
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Calculate the initial KE of the particle 

• Use the momentum measured by the beamline magnetic 
spectrometer to calculate the initial kinetic energy of the 
candidate (assuming pion mass for this analysis) 
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KEloss is the amount of energy lost in traveling from WC4 to the start of the TPC 
active volume. 



Energy lost between WC4 and TPC 

•  Energy loss depends on particle trajectory 
•  If it goes through the hole of the halo veto, use 

flat 25 MeV Eloss 
•  If it goes through the scintillator of the halo veto 

instead, use flat 33 MeV Eloss 

•  Uncertainty on the energy loss is 
conservatively taken to be the standard 
deviation of the full distribution (~6 MeV) 
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Calculate KE of the particle at each slice 

•  The KE of the particle at each 
slice (spacepoint), j, of the TPC 
track is calculated by: 

27 January 2019 J. Raaf    |     Experience from LArIAT  16 

Beamline-selected  
𝜋- candidate  

 
 

W 
C  
4 

W 
C  
3 

~1 m

KEj = KE

front face

�
j�1X

i=0

dE

dx

dxi

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



True vs. Reco Energy 

• At each slice, compare 
true and reco KE 
•  Highly diagonal à most of 

the time we put the particle 
into the right energy bin 

•  In a future iteration of the 
analysis, we could 
improve by doing some 
energy unsmearing 
•  For this analysis, we did not 

unsmear 
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Follow the TPC track, slice by slice 
•  The slice represents the distance between 

each 3D spacepoint in the track 
•  Each slice is an independent experiment 
•  For each slice, ask “Is this the end of the 

track?” 
•  NO: Calculate the kinetic energy of the track at 

this slice. Add an entry in the “incident” 
histogram in that KE bin 
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Follow the TPC track, slice by slice 
•  The slice represents the distance between 

each 3D spacepoint in the track 
•  Each slice is an independent experiment 
•  For each slice, ask “Is this the end of the 

track?” 
•  NO: Calculate the kinetic energy of the track at 

this slice. Add an entry in the “incident” 
histogram in that KE bin 
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Follow the TPC track, slice by slice 
•  The slice represents the distance between 

each 3D spacepoint in the track 
•  Each slice is an independent experiment 
•  For each slice, ask “Is this the end of the 

track?” 
•  YES!: Calculate the kinetic energy of the track 

at this slice. Add an entry in both the 
“interacting” and “incident” histograms 
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Repeat the same process for all tracks 
•  Using only WC-to-TPC matched 

tracks, repeat the process, filling the 
incident and interacting histograms 
•  Ignore other non-matched activity in TPC 

27 January 2019 J. Raaf    |     Experience from LArIAT  21 

Interacting

Incident
Kinetic Energy (MeV)

Kinetic Energy (MeV)

✔ The black 
     track is followed 
 
 
✖ The light blue  
    track is not  
    matched to WC 
✖ The red stub is  
    ignored 
 
✖ The red tracks  
    do not belong to the  
    original track 
     



Uncorrected Cross Section 
•  In a perfect experiment (no backgrounds, no reconstruction 

inefficiencies), the cross section is simply 

•  In real life, we need to subtract background events and 
correct for reconstruction inefficiencies 
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Removing Intrinsic Backgrounds 
• Pion capture and decay occur mostly at rest 

•  Remove most of these by requiring incoming particle to have 
momentum > 420 MeV/c at final wire chamber before entering TPC 
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Beam composition: Low E tune Surviving event percentage 



Non-pion beam background subtraction 
•  Ideally, the MC and data have overall 

good agreement in the interacting and 
incident KE distributions 
•  Then direct subtraction of background in 

each bin is straightforward 
•  In the case of LArIAT’s first analysis, 

our MC shape did not match the data 
shape very well, leading to unphysical 
results in some bins if a direct 
subtraction was done 
•  In this circumstance, we chose to use the 

MC prediction of background in each bin as 
a fraction of the total MC bin content, then 
the background “subtraction” became a 
multiplicative correction instead 

•  Our new MC much better matches the 
data, and so we should be able to move 
to the direct background subtraction 
method for the next iteration of this 
analysis 
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•  Average beam composition after 
analysis selection cuts and thin-slice 
technique 

 
•  Uncertainties in the background 

content (assume uncorrelated) 
•  Apply ±20% variation to muon content 
•  Apply ±20% variation to electron content 

Beam Background Correction and Uncertainties 
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Low Energy 
Beam Tune 

High Energy 
Beam Tune 

Pions 70.9% 82.3% 
Muons 14.6% 13.5% 
Electrons 14.5% 4.2% 



Beam Background Correction and Uncertainties 
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Reconstruction Efficiency Correction 
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Each slice is an independent experiment 

•  Calorimetry does a good job of measuring the energy at each slice along 
the path of the particle, so we usually don’t put things in the wrong KE bin 

•  BUT, if the reconstruction identifies an interaction too early or too late, we 
make a mistake in both the interacting and the incident histograms: 
•  If interaction is found too early (reco track shorter than true track) 

•  Too few entries in “incident” histogram, possibly affecting multiple KE bins 
•  The 1 entry that goes into the “interacting” histogram may be in wrong KE bin 

•  If interaction is missed/found too late (reco track longer than true track) 
•  Too many entries in the “incident” histogram, possibly affecting multiple KE bins 
•  The 1 entry that goes into the “interacting” histogram may be in wrong KE bin 
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Reconstruction Correction Efficiency 
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Cross section after corrections 

•  After applying the corrections for 
background and efficiency to 
combined data from the low-
energy and high-energy 
beamline tunes, cross section is 
compared with Geant4 prediction 

•  Discrepancy at low energy is still 
under investigation 
•  Part of this difference could be due to 

a not-yet-identified systematic 
•  But, since the resonance region is the 

hardest to model (and G4 model for 
argon is interpolated from data on 
heavier/lighter nuclei), difference may 
also be pointing to a model deficiency 
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Summary 
•  Thin-slice method for measuring the cross section  

•  Treats each slice of the TPC as an independent yes/no experiment 
•  Care must be taken in subtracting background and correcting for 

reconstruction inefficiencies 

• Most important uncertainties to consider: 
•  Background subtraction: how well do you know the BGs? 

•  LArIAT’s downstream muon range stack should have been useful to 
help constrain the background, but some hardware issues have 
prevented us from using this information so far 

•  Energy bias/uncertainty 
•  How much energy to account for due to particles traveling through 

uninstrumented materials. Small changes in angle result in not 
insignificant changes to energy loss 

•  Accurate beamline momentum measurement is critical to cross section 
measurement 
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Extras 
•  a 

27 January 2019 J. Raaf    |     Experience from LArIAT  32 

Extra Slides 



Energy reconstruction 
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One entry per interaction One entry per slice 



•   
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